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EUCLID'S ALGORITHM AND THE 
LANCZOS METHOD OVER FINITE FIELDS 

JEREMY TEITELBAUM 

ABSTRACT. This paper shows that there is a close relationship between the Eu- 
clidean algorithm for polynomials and the Lanczos method for solving sparse 
linear systems, especially when working over finite fields. It uses this rela- 
tionship to account rigorously for the appearance of self-orthogonal vectors 
arising in the course of the Lanczos algorithm. It presents an improved Lanc- 
zos method which overcomes problems with self-orthogonality and compares 
this improved algorithm with the Euclidean algorithm. 

INTRODUCTION 

The Lanczos method is an iterative algorithm for solving linear systems of the 
form Ax = b, where A is a square symmetric matrix and b is a known vector. In 
its original formulation, A was a matrix with real entries. Recently, however, the 
algorithm has been applied to solve the large, but very sparse, linear systems over 
finite fields which arise in the final stages of sieve methods for factoring integers and 
solving discrete logarithm problems. In this situation, the algorithm often succeeds 
in producing a solution, but it is also possible that the method will fail, even when 
the matrix A is nonsingular and a solution does in fact exist. This failure occurs 
when the algorithm encounters a vector v which is self-orthogonal with respect to 
the inner product defined by A. 

Several authors have devised methods for overcoming the failure of the Lanczos 
method. Over finite fields, and F2 in particular, Coppersmith ([C1]) and Mont- 
gomery ([M]) describe block versions of the Lanczos algorithm which work with 
subspaces rather than individual vectors; in addition to avoiding failures, these 
algorithms applied to blocks of size N achieve an N-fold speedup over the origi- 
nal method. Coppersmith, and to a lesser extent Montgomery as well, also em- 
ploy "look-ahead" techniques to enable the algorithm to continue beyond problems 
caused by self-orthogonality. 

Despite the great practical success of the Lanczos method, even over the field 
with two elements, the literature lacked a theoretical explanation of why the Lanc- 
zos method works over finite fields and how likely the various sorts of failures are. 
In this note, we reconsider the theory of the Lanczos algorithm over finite fields. 
We show a close relationship between the Lanczos algorithm and the Euclidean 
algorithm for polynomials. 
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Using our Euclidean interpretation of the Lanczos method, we are able to ac- 
count rigorously for the occurrence of self-orthogonal vectors. We also consider 
an improved version of the Lanczos algorithm which begins exactly like the usual 
Lanczos but will always either produce a solution to Ax = b or construct an el- 
ement of the cyclic A-subspace generated by b which is orthogonal to this entire 
subspace. Our improved Lanczos algorithm is similar to a (nonblock) version of the 
"look-ahead" methods discussed by Coppersmith [Cl], put into a convenient form 
for comparison with the Euclidean algorithm. We also remark that our improved 
Lanczos is related to methods for handling "non-normal" Pade approximations as 
discussed in ([B]). 

The other standard method for solving linear systems over finite fields is known 
as Wiedemann's algorithm ([W]). Wiedemann's algorithm exploits the Berlekamp- 
Massey algorithm, also well known to be related to Euclid's algorithm ([D]). Thus 
one aspect of our results is to show that the Lanczos method and Wiedemann's 
method are members of the same family of algorithms. 

In addition, Coppersmith has considered the behavior of a "block" Berlekamp- 
Massey algorithm in [C2]. Therefore, although our results directly explain the 
sources and likelihood of failure only for the nonblock Lanczos method, by connect- 
ing the method to the Euclidean algorithm we reduce the problem of understanding 
the block versions to understanding the Euclidean algorithm applied to polynomials 
with matrix coefficients-a problem very close to that considered by Coppersmith. 

In Section 1 of the paper, we. review the Lanczos method. Section 2 relates 
Lanczos to the Euclidean algorithm, Section 3 describes our improved version of 
the Lanczos method, and Section 4 relates the improved version to Euclid. 

I would like to thank Dan fIernstein for teaching me the Berlekamp-Massey 
algorithm and at least five other "Euclidean" algorithms, an education which led 
to the ideas in this paper, and Don Coppersmith for his comments on the preprint. 

1. THE LANCZOS METHOD 

We begin by describing the Lanczos method in its original formulation. Suppose 
that A is a symmetric n x n matrix with entries in a field F, and suppose that b is a 
nonzero column vector with n entries. Let us write [x, y] for the usual inner product 
and (x, y) for the inner product determined by A; in explicit terms, [x, y] -xty 
and (x, y) = xtAy. If (b, b) = 0, then the algorithm fails immediately; otherwise 
initialize wo = b and 

= Aw (Awo, wo) 
(wo, wo) 

The main iterative step is repeated from i = 1 while (wi, wi) is nonzero: 

Wi+ = w. -(Awi, wi) (Awi, wi -1)WiI w+= I W) (wi- WI) 

When a non-zero wi is obtained with (wi, wi) = 0 the algorithm fails; if wi = 0 the 
algorithm has succeeded and the solution x is recovered by the formula 

x=ZI [b,w ] 
Yj-OW(wj, wj) 
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2. LANCZOS AND EUCLID 

We reformulate the Lanczos algorithm in order to better understand its opera- 
tion. We view V = Ft as a module over the polynomial ring F[T], with T acting 
by A. The element b generates an F[T] submodule K of F'. We let R denote the 
quotient ring F[T]/Ann(b) so that K is free of rank one over R. We let P(T) be 
the monic generator of Ann(b), and we let m be the degree of P and the dimension 
of K. 

We begin with a simple lemma which will be useful in our analysis. 

Lemma 1. Suppose that K and L are cyclic submodules of V, and that the anni- 
hilators of K and L are relatively prime. Then K and L are (., .)-orthogonal. 

Proof. Let p and q be the respective annihilators of K and L. Write xp + yq 1. 
Then 

(k, l) = ((xp + yq)k, l) = (yqk, l) = (yk, ql) = 0. 

Definition 2. The pair {A, b} is degenerate if the restriction to K of the bilinear 
form (., ) determined by A is degenerate. 

Unfortunately, it is possible for the matrix A to be invertible, and the pair 
{A, b} degenerate. For example, suppose that F has characteristic 2, that A is the 
identity matrix, and that b is the vector (1, l)t. The inner product determined by 
A, restricted to the one-dimensional space generated by b, is identically zero. 

One might hope that, for fixed A, at least some vector b has the property that 
{A, b} is nondegenerate. As we see from the following proposition, this is true if 
the characteristic of F is not 2. 

Proposition 3. Suppose that the characteristic of F is not 2 and that A is invert- 
ible. Then there exist nondegenerate vectors. 

Proof. Let Q(T) be the minimal polynomial of A acting on V. By Lemma 1, we 
reduce to the case Q(T) = f (T)r where f is an irreducible polynomial and r an 
integer. Let V[i] be the subspace of V killed by fi(A). Notice that fr-I (A) V is 
orthogonal to V[r - 1]. By nondegeneracy of the pairing on all of V, it follows that 
the induced pairing between fr- (A)V and V/V[r - 1] is nondegenerate. However, 
since V/V[r - 1] is isomorphic to fr-I1(A)V, we view this pairing as a symmetric 
nondegenerate form (,) on V/V[r - 1]; explicitly, this pairing is given by (u,v) = 
(u, fr-1(A)v). Since the characteristic is different from two, we may find a vector 
w such that (w, w) = (w, fr-I (A)w) is not zero. Now let M be the cyclic subspace 
generated by w. Any nonzero element x of M can be written x = fi(A)h(A)w 
where h(T) is prime to f (T) and i < r. Then we can find a polynomial b(T) so 
that fi(T)h(T)b(T) = fr-l(T) (mod (fr (T))). Therefore 

(x, b(A)w) = (w, f r-I (A)tw) 4 O. 

This shows that the pair { A, w} is nondegenerate. r- 
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The restriction to characteristic different from 2 in this proposition is essential. 
Suppose that A E M4(F2) is the matrix 

/1 1 1 OX 

11 0 1 

0 1 1 1) 

Then every cyclic subspace of F4 under the action of A is degenerate. To see this, 
notice first that A2 1, so that A is invertible. If we choose any nonzero vector 

a 
b 

v = c 

then the cyclic subspace K generated by v is spanned by v and Av. If v = Av, then 
v = (a, b, b, a)t for some a and b, and so (v, v) = 0. If v and Av are independent, a 
direct calculation shows that the inner product determined by A, restricted to the 
span of v and Av, satisfies 

(v, v) = (Av, v) = (Av, Av) = a2 + b2 + c2 + d2, 

and so (A + 1)v belongs to the kernel of (,.) on K. Thus K is always degenerate 
in this case. 

To completely understand the behavior of the original Lanczos algorithm and 
the improved Lanczos we present -below, we need to determine the probability that 
a randomly chosen pair of {A, b} is nondegenerate. We have been unable to do 
this. However, the following proposition implies that {A, b} is nondegenerate if the 
characteristic polynomial of A is square-free, which indicates that in some sense 
"general" pairs {A, b} are nondegenerate. 

Proposition 4. Let QA(T) be the characteristic polynomial of A. Suppose that 
that P(T), the annihilator of b, is relatively prime to T and to QA(T)/P(T). Then 
the pair {A, b} is nondegenerate. 

Proof. By Lemma 1, cyclic factors of V belonging to relatively prime divisors of 
QA(T) are orthogonal. This, together with our assumptions on P(T), means that 
if x E K is (,)-orthogonal to all of K, it is (,)-orthogonal to all of V. If (x, v) = 0 
for all v E V, then [x, Av] = [Ax, v] = 0 for all v E V. But the usual dot product is 
obviously nondegenerate on V, so Ax = 0. Since P(T) is prime to T, A is invertible 
on K, so x = 0. D 

Abusing notation somewhat, we let (,.) be the bilinear form on F[T] defined 
by (u,v) = (ub,vb). We also observe that this bilinear form has the property 
(pu, v) = (u, pv) for all p E F [T]. 

Definition 5. Define a formal differential form in F[[T]]dT/T by the formula 

dT 00 dT 
B(T) T ZE(1IT )Tn+l. 

The differential form B(T) dT captures all of the information in the pairing (, ). 
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Definition 6. We denote by ordT=O, the valuation on F(T) defined by 

ordT=,,(P/Q) = degree(Q) - degree(P). 

If f (T)dT is a differential form over F(T), then we define 

ordT=m,(f (T)dT) = ordT=m, (f )- 2. 

Finally, we let ResT=O0 f(T)dT be the coefficient of dT/T in the Laurent series 
expansion of f (T)dT in powers of T and 1/T. In each case we use the same 
notation for the natural extension of ordT=m0 to the field of Laurent series in 1/T 
over F. 

Lemma 7. Let p and q be elements of F[T]. Then 

(p, q) = ResT=m pqB(T) dT 

Proof. Since (Ti, Tn) = (1, Ti+T), and the residue pairing is F-linear, it suffices 
to verify this for the pairings (1, Ti), where it is obvious. F 

In particular, the differential form B(T)dT/T has information on the minimal 
polynomial of A. 

Lemma 8. The differential form B(T)dT/T is a rational differential form with 
denominator a divisor of P(T); in other words, there is a polynomial H(T) such 
that 

P(T)B(T)dT/T - H(T)dT = 0. 

Proof. We have (u, P(T)v) = 0 for all u and v. Writing P(T) = Em akTk, with 
am = 1, we see that 

P(T)B(T) = E bkT 
k=-m 

with bk = m0aj (1, Tk+j), where we adopt the convention that (1, T') = 0 when 
r < 0. When k > 0, we see that bk = (1, P(T)Tk) - 0, so only those terms with 
k < -1 survive; thus P(T)B(T)dT/T is indeed a polynomial in T. F 

Lemma 9. Let D(T) be the polynomial P(T)/gcd(P(T), TH(T)). Then D(T) gen- 
erates the radical of the bilinear form (., ). 

Proof. A polynomial Q(T) belongs to the radical of (-,.) if and only if (Q(T), Tm) 
is zero for all m > 0. If Q(T) has this property, then by the argument in the proof 
of Lemma 8, there is a polynomial G(T) so that Q(T)B(T)dT/T = G(T)dT. Put 
another way, B(T) = TG(T)/Q(T). But the fraction B(T) = TH(T)/P(T) has 
denominator D(T) in lowest terms, so Q(T) is a multiple of D(T). F 

Let us now reconsider the Lanczos algorithm. We apply the Lanczos method 
to polynomials, using the inner product (, ), beginning with wo 1 and w1 = 

T - (T, 1)/(1, 1). The iteration sets 

wj+j = (T - ai)wi - 3wj_, 

where ai and 3^j are the constants (Twi, wi)/(wi, wi) and (Twi, wi-)/(wi1, wi- ), 
respectively. Notice that wi has degree i as a polynomial in T. Notice also that 
the vectors in V constructed by the Lanczos method beginning with b can be 
reconstructed as the sequence wi(A)b. 
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Proposition 10. Suppose that wi is the ith polynomial constructed by the Lanczos 
algorithm. Then there exists a unique polynomnial Hi (T) of degree i - 1 so that 

d T 
ordT=mO(wiB(T) T -Hi(T)dT) > i - 1. 

Furthermore, (wi, wi) = 0 if and only if the inequality is strict. 

Proof. The construction of the polynomials is such that wo, ... , wi -I span the space 
of polynomials in T of degree at most i - 1, and wi is orthogonal to wj if j < i. 
Therefore (wi, Tj) = 0 if j < i and (wi, wi) = (wi, T). Write 

dT bkdT 
wiB(T)T =(ETk)T 

Using the residue interpretation of the inner product, we see that 

dT b =Resm=OO(T3jwi B(T) T~ )o 

if 0 < j < i, and that bi (wi, wi). This proves the proposition. D 

We will now relate the Lanczos algorithm to Euclid's algorithm. Let us briefly 
recall well-known facts regarding approximating power series over F by rational 
functions. First, suppose that 

S(T) = so/T + sl/T2 + s2/T3 ? * 

is the Taylor expansion at infinity of a rational function S(T) = H(T)/P(T) (in 
lowest terms) with coefficients in F. Let qo 1 and po = 0. Then, given Pi and qi 
with 

ordT=,, (qi S(T)- pi) < o?, 

let qi+l be the monic polynomial of least degree such that there is a polynomial 
Pi+, with 

ordT= oo ( qi+ I S (T)- Pi+ 1 ) > ordT= oo ( qi S (T) -Pi ) > ? 

Then pi/qi are the convergents to the continued fraction expansion of S(T), the 
final qi is P(T), and 

ordT=,, (qiS(T) - pi) = degree(qi+ ). 
Recall that m is the dimension of K, the cyclic subspace generated by b. 

Proposition 11. The Lanczos algorithm succeeds (that is, it constructs {wi}li0, 
with wo = 1, Wm = 0 and (wi, wi) -7 0 for i < m) if and only if {A, b} is nondegen- 
erate and the continued fraction expansion of B(T)/T has length m. 

Proof. We apply the isomorphism between K and R = F[T]/P(T) and consider 
the wi as elements of the polynomial ring F[T], with wo = 1. If the Lanczos 
algorithm succeeds, R has an orthogonal basis, so (., *) is nondegenerate. By Lemma 
9, B(T) = TH(T)/P(T) is in lowest terms. In addition, by Proposition 10, we have 
constructed a sequence wi of polynomials, where wi is of degree i, which satisfies 

dT 
ordT=m,(wiB(T) - H?dT) = i - 1 

T 
or alternatively 

ordT.,,(wiB(T)/T - Hi) = i + 1. 
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Since wm is monic, wm --0 mod P(T) and wm has degree m, we have wm = 
P(T). From this it follows that the wi are the denominators of a sequence of 
best approximations, and therefore the continued fraction expansion of B(T)/T 
has length m. 

Conversely, suppose that the continued fraction expansion has length m. Let 
qo , qm- 1, q be the denominators of the convergents, with qo 1 and q, = 
P(T). Then we see that B(T) = TH(T)/P(T) must be in lowest terms, and 
therefore by Lemma 9 that {A, b} is nondegenerate. In addition, we must have qi 
of degree i. Finally, the approximation property of the qi tells us that there are 
polynomials Pi with 

ordT.O, (qiB(T) T -pidT) =i - 1. 
T 

In terms of the inner product, this means that qi is orthogonal to all polynomials of 
degree less than i, but (qi, qi) is not zero. Now apply the Lanczos method starting 
with qo = wo = 1. Suppose that wi = qi for i < N. Then (WN-1, WN1) is 
not zero, so we construct WN of degree N which is monic and orthogonal to all 
polynomials of degree less than N. Since the qi, 0 < i < N, are an orthogonal 
basis for these polynomials, and since qN and wN are both monic, we must have 
WN = qN. Consequently, the qi are precisely the wi, and Lanczos succeeds. D 

We extract the following corollary from the proof. 

Corollary 12. Under the hypotheses of the proposition, the Lanczos polynomials 
are the denominators of the convergents to H/P. 

We see from the above discussion that there are two sources of failure for the 
Lanczos algorithm. What we might call a "serious" failure occurs if the pair {A, b} is 
degenerate; a "mild failure" occurs if H/P has a short continued fraction expansion. 

Corollary 13. Suppose that F has q elements, that {A, b} is nondegenerate, and 
that K has dimension m. Then the Lanczos algorithm will succeed with probability 
(1 1/q) . 

Proof. A failure occurs if, when applying Euclid's algorithm to (TH(T), P(T)), one 
obtains a quotient of degree bigger than one. At each stage of the algorithm the 
chance of this happening is 1/q and there are m independent trials. D 

3. IMPROVED LANCZOS 

The reformulation of Lanczos given above suggests the possibility of improving 
the Lanczos algorithm so that it is not vulnerable to the "mild" failure caused by 
the discovery of a self-orthogonal vector (that is, a wi with (wi, wi) = 0). Such 
improvements are often called "look-ahead methQds." They are relevant even over 
the real numbers, where a small value for (wi, wi) can introduce numerical instabil- 
ity. In this section, we will present our version of an improved Lanczos algorithm, 
and compare it to the Euclidean algorithm. Our improved algorithm has the same 
running time as basic Lanczos, but depending on how it is implemented may require 
more storage. 

Recall that K is the cyclic subspace of Ft generated by b. We begin by adopting 
some rather artificial terminology whose significance will become clear in a moment. 
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Definition 14. Let v be any vector in K. We will call the subspace of K spanned 
by v, .. ., Arv a "block" (of degree r, based at v) provided that (v, A'v) = 0 for 
0 < i < r - 1 and (v, Arv) 74 0. By convention, we view the zero subspace as a 
block of degree -1 based at 0. 

Notice that a vector v with (v, v) 74 0 spans a block of degree zero. 
Suppose that W is a block of degree r based at v. Define another sequence of 

vectors wi, for i = O, .. ., r, by setting wo = v and inductively constructing 

(Aw&i_, Arwo ) 
wi = Awi-I- Aw- IArWO 

wO. 
(wo,Arwo)W 

We will refer to the sequence of vectors wo, ... , Wr as the dual vectors for W. 

Lemma 15. Let wi be the vectors constructed as above for the block W of degree 
r based at v. Then, if j < r, 

(wi ,Ai v) 
Jo if i? #jr, 
{(wo, Arv) if i + jr 

Furthermore, the wi span W. 

Proof. The defining properties of a block show that, for 0 < j < r, (v, A3v) 74 0 if 
and only if j = r. We proceed by induction on i. Suppose that i > 0, and consider 
(wi, AJv). We see that 

(w A3v)- (w&i,J?lv) -(Awl 1, A rV) 
(i,Aiv) = (wj_j,Ai+1v)_ - 

(wo, ArV) (wo, A3v). 

Suppose that i + j = r. Then j < r -1, and so 

(wi,A3v) = (wi-1 A'+lv) = (wo,Arv) 

by induction. If i + j 7& r and j < r-1, then (wi , Ai+lv) = 0 and (wo, AJv) = 0 
by induction. Finally, if j = r, then we obtain (wi, AJv) = 0 by construction. 
Since we have proved that the wi are a dual basis to A3v relative to (-, ), we see 
that they also span W. D 

When the pair {A, b} is nondegenerate, we can use a decomposition of the cyclic 
subspace K into blocks to construct a solution to the equation Ax = b. 

Lemma 16. Suppose that {A, b} is nondegenerate. Then the restriction of the 
inner product [.,*] to K is nondegenerate. 

Proof. Recall that [x, Ay] = (x, y). If {A, b} is nondegenerate, then A is invertible 
on K. Suppose [x, u] 0 O for all u E K. Write x = Av so that [Av, u] = [v, Au] = 
(v, u) = O for all u E K. Therefore v = O and x = O. D 

Lemma 17. Suppose that we write K as a (-, .)-orthogonal direct sum 

K = Wo E Wi E *.* *E Wk, 

where each Wi is a block based at vi of degree ri. Set 
k ri 

( 1) x =-E E ( [ ,b = , ] Ar 3iv 

i=O j=O (Wi, o, Ar% V,) 

where Wi,O, . W. , Wr,mj are the dual vectors constructed as above starting with wi,o 
vi. Then Ax-b = O. 
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Proof. Since (-,.) is nondegenerate on every block, it is nondegenerate on K. It 
follows that [-,*] is nondegenerate on K as well. Therefore we need only verify that 
[u, Ax - b] = 0 for all u E K. Since the wij for fixed i span Wi, the wij together 
span K, and it suffices to check that [wij, Ax - b] = 0 for all pairs of 0 < i < k and 
0 < j < ri. However, using the properties of the wij we see by calculation that 

[wi,j, Ax] = (wij ,x) = [wi,j, b], 

which is the desired result. D 

Our improved Lanczos algorithm will construct an orthogonal decomposition of 
K of this form. Before presenting it, we lay some groundwork. Suppose that we 
have constructed a sequence of blocks Wi c K, i = O,.. ., k, of degree ri, based at 
vi, with the properties: 

1. vo = b. 
2. Wi and Wj are orthogonal with respect to (,.) if i j. 
3. v+j = A vi(mod V=o W.) for 0 < i < k-1. 

Let wij, for 0 < j < ri, be the dual vectors for the block Wi. Set 

(Wk,j Ar +Vk) (Wk,O, ArVk) 
2 k1=A rk 

-V Ar kJVk -Vk - (2) Vk+1 Ark +lVk 
E 

(Wk,O Ark Vk) (Wk,o, Ark- Vk1) 

where, in order to make the recurrence sensible for k 0, we adopt the convention 
that v_ = 0 and (wi ,Ar-lv v) 1. 

Let 

Mk =VWOWVl. Wk. 

Lemma 18. The vector Vk+1 constructed in this way is orthogonal to all Wi for 
i < k. 

Proof. We show first that vk+1 is orthogonal to Wj for j < k -2. Notice that AWj 
is spanned by Avj, A2vj,... , Ai+ 1vj. By the third property of our blocks, 

AWj c Mj + (vj+?). 

Suppose that j < k - 2. Observe that ArkVk belongs to Wk-, and AWj belongs to 
Mj+?. Sinfce j + 1 <k - 1, we see that M?+l and Wk are orthogonal. On the other 
hand, (Vk+l, Wj) = (Ark Vk, AWj) = 0, and so we conclude that vk+1 is orthogonal 
to Ws. 

Next, we show that Wk+l is orthogonal to Wk-1. Write Vk+l= Ark +lVk + x + y 
where x E Wk and y E Wk-l. Suppose that h E Wk-l. Then, since Wk and Wkl 

are orthogonal, 

(Vk+l, h) = (Ark Vk, Ah) + (y, h). 

Using Lemma 15, we may write 

(W-,ivh) A rk_ 1V-irk 
i=o (Wk-1,0, Ark-1Vlk-1) 

Since 

Ark VlVk-1_ Vk (mod (Wo e . Wk-1)) 
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and Ark Vk E Wk, which is perpendicular to the earlier Wi, we see that 

(Ar Vk,Ah) (Wk_1,o , h) l (Ak Vk, A)k- v lVkl1) 
(Wk-1,0, Ark-I Vkl1) 

(Wk-1l,0 h)) (Ark 1Vk Vk) 

(Wk-1,O), Ark-lVkl1) 

On the other hand, by Formula (2), 

(Wk,O, Ark Vk) 

(Wk-1,0 Ark-1Vkkl)- 

so 

(y, h) - (Wk,O, ArkVk) 

Since Vkl = Wk_l,o by definition, we conclude that vk+1 is orthogonal to Wkl. 
Finally, we point out that the formula for Vk+j and the duality properties show 

immediately that vk+1 is orthogonal to Wk, and this proves our lemma. F 

Lemma 19. Suppose that Vk+1 = 0. Then K = Mk. 

Proof. If Vk+1 = 0, then AMk C Mk. Since b e Mk, we conclude K C Mk, so 
K= Mk. D 

Lemma 20. Suppose that Vk+1 74 0 and (vk+1, Ajvk+l) 0 for j = O,... , i - 1. 
Then A2Vk+l is orthogonal to Mk. 

Proof. We proceed by induction. We know the result for i = 0. We know that 
AMk C (Vk+l) + Mk. It follows that (A2Vk+1, Mk) = (A2-lvk+l, AMk) = 0. O 

Lemma 21. Let dk = -,k(ri + 1). Suppose that (vk+1,Ajvk+l) = 0 for j 
o, ... , n - dk. Then Vk+1 belongs to the kernel of (,*) restricted to K. 

Proof. The number dk is the dimension of Mk. The inner product (., ) is nondegen- 
erate on Mk. Therefore, the orthogonal complement to Mk has dimension at most 
n- dk. Under our hypotheses, and using the previous lemma, the n - dk + 1 vectors 
A-vk+? belong to this complement, and are consequently linearly dependent. FRom 
this it follows that K is spanned by Mk and {Ajvk+l }ndkI, and therefore vk+1 is 
orthogonal to all of K. 

Our improved Lanczos algorithm works as follows. 

Algorithm (Improved Lanczos). 
Initialization. Set v_1 := 0, a-1 := 1, vo b, k:= 0, r_1 :=-1, and x:= 0. 
Stage I. (Block Building): Given a nonzero vector vk, find the smallest integer 

rk such that 

k-1 

0 < rk < n - (rj ? 1), 
j=O 

and ak (Vk, ArkVk) is nonzero. If no such rk exists, then we are in the situation 
of Lemma 21. This means that {A, b} is degenerate, and we stop. 
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Stage II. (Projection): Compute the dual vectors Wk,i by setting wk,o vk 
and 

(AWk,i, Ark Wk,O) Wk,i+l = AWk,i- W k,O. 

Compute the new vector Vk+1 by formula (2), which in our terms reads 

Vk+1 = Ark+lVk - (Wk,jA A?k)A Vk - kVkl-. 
j=O ak ak-1 

Extend the computation of the solution x by formula (1) setting 

X rk 
[Wkj J b] 

x =X+?E wkJ ArkJ--Vk 

ak 

If Vk+1 = 0, we are in the situation of Lemma 19, so, by Lemma 17, Ax - b 0. 
Otherwise, set k := k + 1 and return to Stage I. 

We now consider the running time and storage requirements for this algorithm. 
We begin by making a number of remarks regarding implementation. 

Remark I. In the event that all rk are 1, this algorithm reduces to (plain) Lanczos. 

Remark II. We will prove in Section 4 that the block sizes ri are small. Conse- 
quently, in the block building stage, we may store the A2Vk as we consider them. 
As a result, we assume that we enter the projection stage knowing Vk, . . ., Ark Vk. 

Remark III. Using our knowledge of Vk, . . . , Ark Vk, we carry out the computation 
of the Wk,i, the new vector vk+l, and the extended solution x in a single loop. In 
addition, we do not store all of the Wk,J; only the one we need at the moment. 

Stage II (Projection, Refined): 
Vk+1 := A(ArkVk) - (ak/ak-1)Vk-1; 

w:=Vk; 

For i from 1 to rk do 
:= (W,Vk+l); 

X x ? ([w, b]/ak)Ark i+lvk; 

w Aw - (/3/ak)Vk; 

Vk+1 := Vk+1 - (!3/ak)Ark ilVk; 

done; 
x := X ([w, b]/ak)Vk; 

Vk+1 := Vk+1 - ((W, Vk+l)/ak)Vk; 

Proposition 22. This refined version of the projection stage computes x and Vk+1 
according to formulae (1) and (2). 

Proof. Let v'+1, w2, and /32 be the values of vk+l, w, and 13, respectively, after i k?1 
passes through the loop. It is clear that w0 = wk,o and 

Vk+1 =Ark? 1Vk (mod Wk-1). 

It is also evident that when i > 1, then 

(3) v?+l = Ar k+lVk (mod Wk-1 + (Ark Vk, ... , Ark i+lVk)). 

If we assume inductively that wi = Wk,i, then 
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using the duality properties of Wk,i and equation 3. We see from this that 

vt V i_-1 (wk,i, A Vk) Ark-2?lV 

and 

wi+1 Aw - (Wk,i, Ark +Vk)V 
ak 

We conclude by induction that wi = Wk,i for all i; and taking into account the 
final steps of this refined projection stage we see that we correctly compute x and 
Vk+?1- 

Remark IV. Once vk+1 has been computed, the only data we must keep in order 
to continue with the algorithm are vk+1 and the values of vk and ak. 

Remark V. In the event that the improved Lanczos fails (so that {A, b}- is degen- 
erate) it is probably worthwhile trying again with b replaced by b + Au for some 
random vector u. Presumably the odds are good that b + Au is nondegenerate for 
A. (I am grateful to Dan Bernstein for pointing this out to me.) 

Running Time. Suppose that the matrix A has D nonzero entries. Then the time 
to compute Av is proportional to D, the time to compute (., ) is proportional to 
D + n, and the time to compute a scalar multiple av of v or a dot product [., ] is 
proportional to n. 

It is easy to see from the description of the improved Lanczos algorithm that 
building a block of degree r requires r + 1 computations of (, ), so the time for this 
stage is proportional to (r + 1)(D + n). 

In the projection stage, referring to the refined projection described in Remark 
III above, we must compute the dot product (., ) r + 1 times, to build the Wk,j 

and Vk+l, and the dot product [.,-] r + 1 times to construct the solution x. All 
together, including constructing the solution, we need three dot products to move 
ahead one step in the algorithm. In addition, each passage through the loop requires 
a fixed number U of scalar-vector multiplications, and a fixed number of matrix- 
vector multiplications.. Thus the time spent in the projection stage is proportional 
to (r + 1)(D + n) + (r + 1)n + (r + 1)Un. All together, this stage requires time 
proportional to (r + 1)(D + n). Since the sum of the block dimensions is at most 
n, we have the following result. 

Theorem 23. The running time for the improved Lanczos is proportional to 
nD + n2. 

4. IMPROVED LANCZOS AND EUCLID 

Let us now consider the improved Lanczos algorithm in the same terms as we 
considered the original Lanczos method. Returning to the notation of Section 2 
of this paper, we map F[T] -* Fn via the map T F-+ Ab. We then obtain an 
isomorphism of R = F[T]/P(T) with the cyclic submodule K of F'. We also 
have a symmetric bilinear form on F[T] defined by (f,g) = (f(A)b,g(A)b) for 
polynomials f and g in F[T]; assuming the pair {A, b} is nondegenerate, this form 
yields a nondegenerate pairing on R = F[T]/P(T). 

As we have seen in Section 1, plain Lanczos applied to R finds the denominators 
in the continued fraction expansion of the power series B(T)/T constructed from 
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the pairing (.,-) provided that the degrees of these denominators go up by one 
at each stage. The improved Lanczos finds these denominators regardless of their 
degrees. 

Theorem 24. Apply the improved Lanczos to the ring R = F[T]/P(T) using the 
dot product (., .). Let Wi, for i = 0. .. , k, be the blocks of degree ri based at fi 
constructed by this algorithm, starting with fo = 1. Suppose that the algorithm 
terminates with fk+1 = 0. Then the polynomials fi are the denominators of the 
convergents to B(T)/T. 

Proof. We will show that the fi are the denominators of a sequence of best approx- 
imations to B(T)/T. Let dk = EkZo(rj + 1). The polynomial fi has degree di-1 
and is orthogonal to all of the Wj for j < i and to the Tifi for j =, ... , ri - 1. 
Thus fi is orthogonal to all polynomials of degree less than or equal to di - 2, but 
(fi, T'i fi) is not zero. It follows that there exists a polynomial Hi of degree di- l-1 
such that 

(4) ordT=mO(fiB(T) T + HidT) = di- 2. 
T 

Suppose that g is a polynomial of degree k where the integer k satisfies di2 < k < 
di-1. Write 

g--(ax? + *+ ao)fi-l (mod Wo e *.. * Wi-2), 

with a, nonzero. It follows that (wi_-,r,_1_s,g) = a, :4 0, where wi1l,rj_ -s is the 
appropriate dual polynomial from Wi1. Since wi1l,r,--s has degree di-2+ri--s, 
there is a polynomial p such that 

ordT=m,(gB(T) T -p(T)dT) < di-2 +ri1 - 1 - s = di- 2 - s. 

Since di1 - 2 - s < di, - 2 < di - 2, we see that fi-I and fi are successive 
best approximations. From this it follows that fi is the polynomial of least degree 
which achieves the approximation in equation (4), and therefore that fi is the 
denominator of a convergent. By induction, the fi are precisely the denominators 
of the convergents. F 

We can now show that block sizes are typically small. 

Corollary 25.. Over a finite field with q elements, if {A, b} is nondegenerate, then 
a block of degree r occurs with probability (l/q)r+l. 

Proof. The probability in question is the probability of obtaining a partial quotient 
of degree r in the course of applying the Euclidean algorithm to a pair of polynomials 
over Fq., 

CONCLUSION 

We have shown that the Lanczos method and the improved version of it we 
describe here are closely related to the Euclidean algorithm. They share this trait 
with Wiedemann's method, which employs another version of Euclid's algorithm, 
the Berlekamp-Massey algorithm, to the problem of solving linear equations over 
finite fields. It seems quite reasonable that the third common iterative method, the 
Conjugate Gradient method, is probably also based on Euclid, although we have 
not looked at it in detail. 
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As we mentioned in the introduction, when working with practical problems over 
fields of small characteristic, Coppersmith, Montgomery, and others have demon- 
strated the usefulness of working with block methods. If we apply the point of 
view of this note to the analysis of these block methods, we are led to consider 
the application of the Euclidean algorithm to polynomials with entries in a ring of 
matrices. This problem has been considered by Coppersmith in the context of the 
Berlekamp-Massey algorithm ([C2]), but more work is clearly needed to clarify the 
significance of that for a complete understanding of the behavior of block Lanczos 
methods. 
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